Increasing the density of nanomedicines improves their ultrasound-mediated delivery to tumours.
نویسندگان
چکیده
Nanomedicines have provided fresh impetus in the fight against cancer due to their selectivity and power. However, these agents are limited when delivered intravenously due to their rapid clearance from the bloodstream and poor passage from the bloodstream into target tumours. Here we describe a novel stealthing strategy which addresses both these limitations and thereby demonstrate that both the passive and mechanically-mediated tumour accumulation of the model nanomedicine adenovirus (Ad) can be substantially enhanced. In our strategy gold nanoparticles were thoroughly modified with 2kDa polyethyleneglycol (PEG) and then linked to Ad via a single reduction-cleavable 5kDa PEG. The resulting Ad-gold-PEG construct was compared to non-modified Ad or conventionally stealthed Ad-poly[N-(2-hydroxypropyl)methacrylamide] (Ad-PHPMA). Notably, although Ad-gold-PEG was of similar size and surface charge to Ad-PHPMA the increase in density, resulting from the inclusion of the gold nanoparticles, provided a substantial enhancement of ultrasound-mediated transport. In an in vitro tumour mimicking phantom, the level and distance of Ad-gold-PEG transport was shown to be substantially greater than achieved with Ad-PHPMA. In in vivo studies 0.1% of an unmodified Ad dose was shown to accumulate in tumours, whereas over 12% of the injected dose was recovered from the tumours of mice treated with Ad-gold-PEG and ultrasound. Ultimately, a significant increase in anti-tumour efficacy resulted from this strategy. This stealthing and density-increasing technology could ultimately enhance clinical utility of intravenously delivered nanoscale medicines including viruses, liposomes and antibodies.
منابع مشابه
Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner
The blood vessels of cancerous tumours are leaky and poorly organized. This can increase the interstitial fluid pressure inside tumours and reduce blood supply to them, which impairs drug delivery. Anti-angiogenic therapies--which 'normalize' the abnormal blood vessels in tumours by making them less leaky--have been shown to improve the delivery and effectiveness of chemotherapeutics with low m...
متن کاملDestructive effects of therapeutic ultrasound and gold nanoparticles on a breast carcinoma tumor model in BALB/c mice
Background: Acoustic cavitation which occurs at high intensities of ultrasound waves can be fatal for tumor cells; however, it can be used to destroy cancer cells as an efficient therapeutic method. On the other hand, it is known that the existence of nanoparticles in a liquid decreases the acoustic cavitation onset threshold. Materials and Methods: In this work, the combined effects of therape...
متن کاملA study on the possibility of drug delivery approach through ultrasonic sensitive nanocarriers
Physical drug delivery through smart nanocarrier and external stimulus could lead to significant improvements of drug potency as well as noticeable decrease in unwanted side effects. Currently, many external energy sources such as light, magnetic fields, ultrasound, ..., are under investigation as external stimulus for physical drug delivery. The purpose of this paper is to review most recent ...
متن کاملNanolipoparticles-mediated MDR1 siRNA delivery: preparation, characterization and cellular uptake
Objective(s): Lipid-based nanoparticles (NLP) are PEGylated carriers composed of lipids and encapsulated nucleic acids with a diameter less than 100 nm. The presence of PEG in the NLP formulation improves the particle pharmacokinetic behavior. The purpose of this study was to prepare and characterize NLPs containing MDR1 siRNA and evaluate their cytotoxicity and cellular uptake. MDR1 siRNA coul...
متن کاملDensity Functional Theory Calculations of Functionalized Carbon Nanotubes with Metformin as Vehicles for Drug Delivery
Drug delivery by nanomaterials is an active emergent research area and CNTs draws considerable potential application owing to its unique quasi one-dimensional structure and electronic properties. Single walled carbon nanotubes and carbon fullerenes can be used in drug delivery due to their mechanical and chemical stability. The past few years, increasing attention by several reputed groups has ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of controlled release : official journal of the Controlled Release Society
دوره 210 شماره
صفحات -
تاریخ انتشار 2015